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1 Terminology

Hypercomputer A computer that can compute anything that a

Turing machine can compute, and more.

Hypercomputation The field that studies hypercomputers.

Hypercomputationalism The thesis that hypercomputers are of

more than just logical and mathematical interest.

See http://www.hypercomputation.net for a list of currently active

hypercomputationalists.
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2 Recent Work on Hypercomputation

• Copeland, B.J. (2000) Narrow Versus Wide Mechanism. Journal

of Philosophy 97, pp. 1–32.

• Copeland, B.J. & D. Proudfoot (1999) Alan Turing’s Forgotten

Ideas in Computer Science. Scientific American 280 (April

1999), pp. 99–103.

• Copeland, B.J. & R. Sylvan (1999) Beyond the Universal Turing

Machine. Australasian Journal of Philosophy 77, pp. 46–66.

• Hava T. Siegelmann (1998) Neural Networks and Analog

Computation: Beyond the Turing Limit.

• Copeland, B.J. (1997) The Broad Conception of Computation.

American Behavioral Scientist 40, pp. 690–716.
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3 The Turing Machine (1936)

Control unit

Read/write head

01 0 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 0

A Turing machine consists of

• a control unit that has a finite number of possible states

• a read/write head that can read/write one symbol at a time

• a tape divided into squares; each square contains one symbol

from a finite alphabet
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Moreover, the behaviour of the control unit is describable by means

of a finite list of quintuples of the form 〈currently read symbol,

current state, symbol to be written, next state, action〉, where ‘action’

stands for ‘go one square to the left’ or ‘go one square to the right’.

The machine stops if the control unit enters a designated halt state

or encounters a symbol which it cannot handle in its current state.

A ‘universal Turing machine’ can simulate any Turing machine.

See Boolos and Jeffrey, Computability and Logic, for details.
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4 Hypercomputers

4.1 O-Machines

Turing machines with an ‘oracle’ (Turing 1939).

The oracle answers ‘yes/no’ questions, e.g., ‘Does Turing machine X

halt on input Y?’

A universal Turing machine cannot answer this question.
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An Interesting Class of O-Machines

Hava Siegelmann’s analog recurrent neural networks with real-valued

weights.

A simple neural net:

m

m

m

m

m

m

m

m

m
m

PPPPPq

PPPPPq

PPPPPq

PPPPPq

PPPPPq PPPPPq@
@

@
@@R

@
@

@
@@R �

�
�

��	

�
�

�
����

�
�

���

@
@

@
@@I

�����1

�����1

�����1

�����1

�����1

�����1



4 HYPERCOMPUTERS 10

Siegelmann’s results concerning analog recurrent neural networks:

nets with integer weights finite automata

nets with rational weights Turing machines

nets with real weights O-machines
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Basic idea: one of the weights in a real-valued net may be

uncomputable.

A suitable decoder might extract interesting information from such a

weight.

For example, let w = 0.010111011000 . . . in binary notation.

Given an input string of length 3, the decoder might read off the 3rd

digit of the binary expansion of w.

This might be the answer to the question whether the 3rd Turing

machine halts given the 3rd input.
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Is the Brain a Hypercomputer?

The neurophysiologically most adequate models of brain activity

which exist today are the so-called “third generation” neural network

models with spiking neurons.

These networks are equivalent with Siegelmann’s analog recurrent

networks with real weights.

This raises the question: Is the brain a hypercomputer?
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Well, is the brain a hypercomputer?

Probably not.

There is one factor that spoils the fun: noise.

Spiking neural nets subject to realistic types of noise are, in general,

less powerful than finite automata (Wolfgang Maass & Pekka

Orponen).

The same result applies to Siegelmann’s super-Turing nets as well.
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Other O-Machines

Some hypercomputationalists have speculated that there are entities

in Nature which might be used in the same way as the uncomputable

weights w of Siegelmann’s nets.

Candidates that have been proposed:

• the physical constants (e.g., the gravitational constant G)

• the amount of background noise (from cosmic radiation and so

on) at a given place as a function of time

My reaction: these phenomena may well be uncomputable, but it

would be highly surprising if they could be used to build oracles.

Nevertheless, The Noise Factory (UK) has announced a

hypercomputer (available within a few years) based on this idea.
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4.2 Accelerated Turing Machines

The basic idea predates that of the Turing machine (R.M. Blake

1926, H. Weyl 1927).

First step: 1

2
sec., second step: 1

4
sec., n-th step: 2−n sec. Since

∑
∞

n=1
2−n = 1, the machine may carry out infinitely many steps in

one second.

An accelerated universal Turing machine can, in a sense, solve the

problem ‘Does Turing machine X halt on input Y?’

Let it simulate X with input Y and set it in motion.

Inspect its behaviour after 1 sec.

The machine will have halted (at some moment t < 1) if and only if

the answer to the question is ‘yes’.
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Copeland is fond of accelerated Turing machines, but they are

physically unrealistic.

The smallest measurement of length with any physical meaning is the

Planck length (ca. 4 × 10−35m, i.e., about 10−20 times the size of a

proton).

The smallest measurement of time that has any physical meaning is

the Planck time, the time it takes to cross the Planck length at the

speed of light (ca. 1.4 × 10−43s).

The 143rd step of the accelerated Turing machine takes 2−143

seconds, which is less than 10−43 seconds. Operations which are that

fast make no sense from a physical point of view.

Even if we give the machine 4.5 × 109 years instead of just one

second, it will already reach the ‘Planck limit’ at the 200th step.
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4.3 Analog Automata

Several proposals.

• Analog analogues of the Turing machine.

L. Blum, F. Cucker, M. Shub and S. Smale (1997) Complexity

and Real Computation.

• Extensions of the so-called General Purpose Analog Computer

(Cris Moore and others).

Problem: the new components are not realistic in “a world with

noise, quantum effects, finite accuracy and limited resources.”
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An Illustration A simple analog apparatus capable of doing

something that no Turing machine can do (after F. Waismann 1959).

α
A

R

L

M

M is a circular mirror with a reflecting surface on

the inside; A is a small hole in M with a semi-

transparent detector (light may come in but not

go out); R is an incoming ray of light; α is the

angle between R and the horizontal plane L.

By the laws of geometry and optics, the detector at A gets hit from

the inside if and only if there is some rational number q such that

α = q × π. (In the diagram, α = 1

5
π.)

Thus, the apparatus determines whether α is a rational multiple of π.

No Turing machine can perform this calculation!
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An Illustration. . . (Continued) This apparatus illustrates what

is wrong with analog computers in general.

It does not work unless A is infinitely small and M is perfectly

circular.

Moreover, we can never be sure that α is exactly what we want.
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4.4 Other Ideas

Interesting Turing machines that accept (possibly uncomputable)

input (whose tape gets changed) as they work.

Fanciful Machines that communicate with other universes with

different physical laws (e.g., vastly different universes in which

Newtonian physics instead of Relativity Theory and Quantum

Mechanics holds).
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5 Against Hypercomputationalism

5.1 Objection 1. The Bekenstein Bound

Theorem A spherical region with radius R and energy E can

contain only a limited amount of information I (in the

sense of number of distinguishable quantum states):

I ≤ 2πER/~c ln 2

where ~ is Planck’s constant and c is the speed of light.
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The time for a state transition cannot be less than the time it takes

for light to cross a sphere of radius R, which is 2R/c.

So the Bekenstein bound implies that there is a maximum

information processing rate N :

N ≤ πE/~ ln 2
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The Bekenstein Bound entails that Turing machines—with their

infinite number of configurations—are physically impossible (at least

if they are to have a finite size and bounded energy).

The same applies a fortiori to Hypercomputers.

Only certain types of finite automata are physically possible.
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Possible Counterargument Even a two-state device may display

uncomputable behaviour, e.g., a totally random succession of

occurrences of state0 and state1.

Does QM have anything to say about this?
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5.2 Objection 2. Empirical Meaningfulness

Even if a hypercomputer were put into our hands, we could not

determine whether it is a hypercomputer.

For we can only make a finite number of observations of limited

precision.

And any finite collection of finite data can be accounted for by

assuming that they were produced by a finite automaton.

So the claim that a given device is a hypercomputer rather than a

Turing machine—or a Turing machine rather than a finite

automaton—is in a sense empirically meaningless.
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Possible Counterargument This objection applies to all

scientific theories.

They always go beyond the data.

The hypothesis that a certain apparatus is a hypercomputer does not

differ from any other scientific hypothesis in this respect.
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6 Conclusion

It remains to be seen if the field of hypercomputation is of more than

merely logical and mathematical interest.

Anyway, the field certainly broadens our perspective.

As Copeland and Sylvan have written:
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We would be profoundly surprised if the physics of the

real world can be properly and fully set out without departing

from the set of Turing-machine-computable functions.

These functions have been the focus of intense interest

during the brief six decades since Turing delineated them, but

the explanation of this is surely their extreme tractability,

together, of course, with the fact that they have made a

considerable number of people very rich, rather than because

some inherent suitability for exhaustively describing the

structure and properties of matter is discernible in them.
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Moreover, as we have already related, these functions

were the fruit of Turing’s analysis of the activity of an

idealised human mathematician working mechanically with

pencil and paper.

It is simple anthropomorphism to expect the same set of

functions to be prominent in the behaviour of the world

minus human mathematicians.

In short it would—or should—be one of the greatest

astonishments of science if the activity of Mother Nature

were never to stray beyond the bounds of

Turing-machine-computability.
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7 For Further Reading

• http://www.hypercomputation.net

• Jack Copeland and Gert-Jan Lokhorst, Hypercomputation: A

Dialogue, Minds and Machines, special issue on

Hypercomputation, to appear in 2001 or 2002.

• These transparencies are available at

http://www.eur.nl/fw/staff/lokhorst/hypercomputation.

helsinki.html


