The Logic of Common Ignorance

Gert-Jan Lokhorst TU Delft g.j.c.lokhorst@tudelft.nl Collective Intentionality X The Hague, The Netherlands

September 1, 2016

Introduction

Quote "Knowledge is a big subject. Ignorance is bigger... and it is more interesting."¹
 Claim Ignorance has some surprising properties.
 Example Common ignorance.

¹Stuart Firestein, Interview about S. Firestein, *Ignorance: How It Drives* **UDelft** *Science*, OUP 2012.

Question

- "Obama calls Trump ignorant about foreign affairs" (Google, August 16, 2016, 8 results).
- "Trump calls Obama ignorant about foreign affairs" (Google, August 16, 2016, about 135 results).
- Suppose that at least one of them were right. (Of course, both could be right.)
- Would this give the group of all humans common ignorance about foreign affairs?

To answer this question, we extend the (propositional) logic of individual, shared and common knowledge that A, $TEC_{(m)}$, with a few uncontroversial definitions. $TEC_{(m)}$ applies to a group having members $1, \ldots, m$. $TEC_{(m)}$ is well-known and is axiomatized as follows.²

²J.-J. Ch. Meyer and W. van der Hoek, *Epistemic Logic for Computer* **Computer Science and Artificial Intelligence** (Cambridge: Cambridge University Press, 1995), Ch. 2.1.

Symbols

- ► Individual knowledge that A: K_iA, where 1 ≤ i ≤ m. K_iA is read as "i individually knows that A" or as "i has individual knowledge that A."
- Shared knowledge that A: EA. EA is read as "everyone knows that A" or as "the group has shared knowledge that A."
- Common knowledge that A: CA. CA is read as "it is commonly known that A" or as "the group has common knowledge that A."

Axioms and derivation rules

A1 All instances of propositional tautologies. A2 $\mathbf{K}_i(A \to B) \to (\mathbf{K}_i A \to \mathbf{K}_i B)$. A3 $K_i A \rightarrow A$. A4 $\mathbf{E}A \leftrightarrow \bigwedge_{i=1}^{m} \mathbf{K}_{i}A$. A5 $CA \rightarrow A$ A6 $CA \rightarrow ECA$. A7 $C(A \rightarrow B) \rightarrow (CA \rightarrow CB)$. A8 $C(A \rightarrow EA) \rightarrow (A \rightarrow CA)$. R1 From A and $A \rightarrow B$ infer B. R2 From A infer K_iA_i R3 From A infer CA.

Theorems

- 1.1 $CA \rightarrow EA$ (common knowledge that A implies shared knowledge that A).
- 1.2 $\boldsymbol{E}A \rightarrow \boldsymbol{K}_i A$ (shared knowledge that A implies individual knowledge that A).
- 1.3 $CA \rightarrow K_i A$ (common knowledge that A implies individual knowledge that A).
- †1.4 $K_i A \rightarrow CA$ (individual knowledge that A implies common knowledge that A) is *invalid* [proof: by the semantics].

Intuitively, $CA = \bigwedge_{i \ge 0} E^i A$ (common knowledge that A is the conjunction of A, shared knowledge that A, shared knowledge that the group has shared knowledge that A, and so on).

Knowledge whether/about

Symbols:³

- Individual knowledge about A: Δ_iA = K_iA ∨ K_i¬A. Δ_iA is read as "*i* individually knows whether A" or as "*i* has individual knowledge about A."
- Common knowledge about A: C_∆A = CA ∨ C¬A. C_∆A is read as "the group has common knowledge about A."

³See J. Fan, Y. Wang and H. van Ditmarsch, "Contingency and Knowing Whether," *The Review of Symbolic Logic*, 8:75–107, 2015.

Theorems

- 2.1 $C_{\Delta}A \rightarrow \Delta_i A [(CA \lor C \neg A) \rightarrow (K_i A \lor K_i \neg A)]$ (common knowledge about A implies individual knowledge about A) [from $CA \rightarrow K_i A$ (1.3) by propositional calculus].
- †2.2 $\Delta_i A \to \boldsymbol{C}_{\Delta} A$ (individual knowledge about A implies common knowledge about A) is *invalid* [proof: by the semantics].

Ignorance whether/about

Symbols:⁴

Individual ignorance about A:

 $\nabla_i A = \neg \Delta_i A = \neg \mathbf{K}_i A \land \neg \mathbf{K}_i \neg A$ (individual ignorance about A is the negation of individual knowledge about A). $\nabla_i A$ is read as "*i* does not individually know whether A", as "*i* individually ignores whether A" or as "*i* has individual ignorance about A."

Common ignorance about A:
C_∇A = ¬C_ΔA = ¬CA ∧ ¬C¬A (common ignorance about A is the negation of common knowledge about A). C_∇A is read as "the group has common ignorance about A."

⁴See Fan, Wang and Van Ditmarsch, "Contingency and Knowing Whether," op. cit.

Theorems

- 3.1 $\nabla_i A \to \mathbf{C}_{\nabla} A \ [\neg \Delta_i A \to \neg \mathbf{C}_{\Delta} A]$ (individual ignorance about *A*) implies common ignorance about *A*) [from $\mathbf{C}_{\Delta} A \to \Delta_i A$ (2.1) by contraposition].
- †3.2 $C_{\nabla}A \rightarrow \nabla_i A$ (common ignorance about A implies individual ignorance about A) is *invalid* [proof: by the semantics].

Individual ignorance about A is therefore stronger than common ignorance about A. If agents have individual ignorance about A, all groups to which they belong have common ignorance about A.

Answer to question

- Obama and Trump called each other ignorant about foreign affairs.
- Suppose that at least one of them were right.
- Question: would this give the group of all humans common ignorance about foreign affairs?
- Answer: yes, it would, by theorem $\nabla_i A \rightarrow \boldsymbol{C}_{\nabla} A$ (3.1).

Common ignorance about common ignorance

- S5EC_(m) is TEC_(m) plus ¬K_iA → K_i¬K_iA ("i does not know that A" implies "i knows that i does not know that A").
- ▶ **S5EC**(m) has the following theorem.⁵
 - 4.1 $\neg C_{\nabla}C_{\nabla}A$ (there is no common ignorance about common ignorance about *A*).
- ► **TEC**_(m) does not have this theorem, as the semantics shows.
- ► The Obama/Trump case seems to show that 4.1 is false.
- We do have common ignorance about our common ignorance about foreign affairs.
- TEC_(m) is therefore preferable to S5EC_(m).

⁵H. Montgomery and R. Routley, "Contingency and Non-Contingency Bases" for Normal Modal Logics," *Logique et Analyse*, 9:318–328, 1966.